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This paper presents a statistical micromechanics-based multi-scale material modeling
framework to predict the effective elastic moduli of porous materials. The present
formulation differs from most of the existing theoretical models in that the interaction
effects among the pores are directly accounted for by considering the pair-wise interaction
and the statistical information of pore distribution is included by applying the ensemble
volume averaging process. The theory of average fields is employed to derive the stress
and strain concentration factor tensors that relate the local average fields to the global
averages. Closed-form and analytical explicit expressions for the effective elastic moduli of
porous materials are obtained in terms of the mechanical properties of the matrix material
and porosity. The dependence of effective elastic properties on the porosity is investigated.
Comparison of our theoretical prediction with the results of the published experimental
data and other existing theoretical models is performed to illustrate the predictive capability
of the proposed framework for porous materials. C© 2003 Kluwer Academic Publishers

1. Introduction
Porous materials have been used in a wide range of
applications in various engineering areas from ceram-
ics to porous shape memory alloys. In order to uti-
lize porous materials effectively, it is desired to know
their mechanical behavior as a function of porosity. A
number of empirical equations and theoretical models
have been developed for the effective elastic proper-
ties of porous materials. Though empirical equations
can provide accurate descriptions of experimental data,
theoretical models having rigorous connection with
the microstructure are usually more predictive and
interpretive.

The prediction and estimation of the effective
mechanical properties of porous materials are of great
interest to researchers and engineers in the science
and engineering disciplines. There are many theoretical
methods in the literature to tackle this class of problems
[1]. Most of these existing theoretical models have been
developed by assuming the porous material as a special
case of a two-phase composite and extending the results
of a representative two-phase element to the continuum
material. The unit cell technique is used to derive the
effective elastic moduli by assuming a periodic distri-
bution of pores [2]. The representative volume element
technique predicts the averaged macroscopic elastic
properties of the porous material with random distri-
bution of pores. In this technique, the effective prop-
erties of a heterogeneous porous material are obtained
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by some volume- and ensemble-averaging processes
over a representative volume element (RVE) featuring
a mesoscopic length scale which is much larger than
the characteristic length scale of inclusions but smaller
than the characteristic length scale of a macroscopic
specimen. This technique includes the self-consistent
method [3, 4], the differential method [5] and the
Mori-Tanaka method [6]. Qidwai et al. [2] investigated
the elastic and thermomechanical behavior of porous
shape memory alloys using both the unit cell and repre-
sentative volume element techniques. Other theoretical
methods include the minimum solid area model [7] and
the generalized method of cells [8].

In this paper, we propose to use a statistical
micromechanical model with closed-form and analyt-
ical explicit expressions to describe the effective elas-
tic moduli of porous materials. This approach differs
from other existing theoretical models in that the inter-
action effects among pores are accounted for by con-
sidering the pair-wise interaction between two pores
and the statistical distribution of pores is taken into
account by applying the ensemble-volume averaging
process. To simplify the derivation, all pores are as-
sumed spherical in shape and equal in size. The pores
are distributed randomly among the matrix material.
Accordingly, a microscopically heterogeneous porous
material can be equivalently replaced by a macroscop-
ically homogeneous continuum medium with properly
defined effective properties. Nevertheless, the proposed
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framework is capable of modeling more general prob-
lems including the variation of pore size, shape, and the
distribution.

Since the pores are assumed to be distributed ran-
domly among the matrix, it is impractical to consider
only a given realization of the distribution of pores.
Furthermore, the pores could be close to each other in
the case of moderate to high concentrations of pores in
the porous material. The interaction effects among the
pores are therefore an important factor when consider-
ing the macroscopic properties of the porous material.
However, considering the effects of interaction among
all the pores is intractable due to the large number of
pores typically present in the porous material. In this
paper, the effect of interaction between two pores is
calculated analytically at the microscopic level. The
pair-wise interaction solution is then averaged among
the statistical space to account for the inhomogeneity
of the porous material. This leads to approximate yet
closed-form analytical results.

This paper is organized as follows. In Section 2, we
first consider a linear elastic two-phase composite con-
taining randomly located spherical inclusions. The for-
mulation starts by applying the theory of average fields
to establish the relations between the effective elastic
moduli and the concentration factor tensors. The con-
cept of eigenstrain via the Eshelby’s equivalence prin-
ciple is introduced to solve the problem of two-sphere
interaction in an infinite elastic matrix. Approximate
closed-form solutions are derived for this pairwise in-
teraction problem. Based on the solutions, an ensemble
average is performed to account for the statistical distri-
bution of the inclusions among the matrix material. The
stress and strain concentration factor tensors are identi-
fied based on the governing ensemble-volume averaged
field equation that relates the macroscopic strain, the
uniform remote strain and the average eigenstrain, and
the effective elastic moduli for a two-phase composite
are derived. Finally, explicit closed forms for the effec-
tive elastic moduli of porous materials are derived in
terms of the mechanical properties of the matrix mate-
rial and porosity. To assess the accuracy of the proposed
framework, comparisons between our predictions and
the results of the published experimental data and other
existing theoretical models are given in Section 3.

2. Effective elastic behavior
of porous materials

In this section, we first attempt to construct an accurate
estimation of the effective elastic moduli of a two-phase
composite system containing randomly located spheri-
cal inclusions based on the theory of average fields, the
proposed approximate pairwise interaction solutions
and the ensemble-volume averaging process. Based on
the solutions, closed-form and analytical explicit ex-
pressions for the effective elastic moduli of porous ma-
terials are then derived in terms of the mechanical prop-
erties of the matrix material and porosity.

For the simplicity of presentation and mathematical
operation, we assume that the material properties for
both the matrix phase and the inclusion phase in a two-
phase composite system are isotropic and the loading

at any local material point remains within the elastic
limit. It is further assumed that the inclusions do not
intersect each other and the material properties of both
phases remain unchanged for the loading considered.
Nevertheless, the framework that is proposed in this
paper is valid for the general composite system with any
arbitrary material property for the constituent phase.

2.1. Relations between effective elastic
moduli and concentration factor
tensors

For a two-phase composite consisting of an elastic ma-
trix (phase 0) and randomly dispersed elastic spherical
inclusions (phase 1), the relations between the stress σ

and strain ε at any point x in the α-phase (α = 0 or 1)
are governed by

σα(x) = Cα : εα(x) (1)

εα(x) = Dα :σα(x) (2)

where the operator: denotes the tensor contraction, and
Cα and Dα are the elastic stiffness and compliance
tensors for α-phase, respectively.

By taking the volume average of Equations 1 and
2 over the sub-domain occupied by the α-phase, we
obtained the following two equations that relate the
local average stress and strain fields

σ̄α = Cα : ε̄α (3)

ε̄α = Dα : σ̄α (4)

where an over-bar represents the volume average of the
corresponding quantity.

Similarly, the macroscopic elastic properties can be
expressed by the following equations through the global
effective elastic moduli

σ̄ = C∗ : ε̄ (5)

ε̄ = D∗ : σ̄ (6)

where C∗ and D∗ are the global effective elastic stiffness
and compliance tensors, respectively.

Due to the high degree of complexity of the arbitrary
geometry and concentration of the inclusions, the de-
termination of the exact internal local stress or strain
field in a composite system is in general formidable. In
many applications, the average of the field provides a
tractable avenue based on the volume-averaged quanti-
ties than the actual local solutions. A method based on
the so called stress and strain concentration factors was
introduced by Hill [9] and later extended by Dvorak
[10] to address the effective properties of composite
materials.

In physical sense, the concentration factor defines the
relationship between the local field and the average of
the global field. In the case of the stress field, the stress
at any local point for a specific material phase is related
to the average stress for the global composite system
via the stress concentration factor. If only the average
of the local stress field is required, upon averaging over
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the local material phase, we can obtain the following
relationship

σ̄α = Bα : σ̄ (7)

where the fourth rank tensor Bα is the volume averaged
stress concentration factor tensor for phase α.

Similar definition is made for the strain field

ε̄α = Aα : ε̄ (8)

in which Aα is the volume averaged strain concentra-
tion factor tensor for phase α.

Since the two material phases are assumed not to
overlap each other, the averaging process at the global
scale can be separated into two parts—one for each
phase. Therefore, the following two equations can be
obtained

σ̄ = φ0σ̄0 + φ1σ̄1 (9)

ε̄ = φ0ε̄0 + φ1ε̄1 (10)

where φα denotes the α-phase volume fraction.
With Equations 7 and 8, the relationship between the

concentration factors for the two phases can be written
as

φ0B0 + φ1B1 = I (11)

φ0A0 + φ1A1 = I (12)

where I is the fourth rank identity tensor.
Consequently, from Equations 3–10, the global effec-

tive elastic moduli are expressed in terms of the volume
fractions, the elastic moduli of the constituent phases,
and the concentration factor tensors as shown in the
following two equations

C∗ = φ0C0 · A0 + φ1C1 · A1 (13)

D∗ = φ0D0 · B0 + φ1D1 · B1 (14)

More concise and convenient forms which depend on
quantities related to a single material phase can be de-
rived with the help of Equations 11 and 12 (α �= β):

C∗ = Cα + φβ(Cβ − Cα) · Aβ (15)

D∗ = Dα + φβ(Dβ − Dα) · Bβ (16)

From Equations 15 and 16, the global effective elastic
moduli for a two-phase composite system can be ob-
tained provided that the stress or strain concentration
factor tensor is available.

2.2. Approximate solutions of two-sphere
interaction problem

Let us consider the problem of two spherical inclusions
embedded firmly in an infinite elastic solid subjected to
a far field loading. For simplicity, it is assumed that the
two spherical inclusions are of the same size and their

Figure 1 Schematic diagram of two-sphere interaction problem.

radius is denoted as a. As shown in Fig. 1, the locations
for the centers of spherical inclusion 1 and 2 are de-
noted as x1 and x2, respectively. There are two material
phases in this problem. Phase 0 and 1 denotes the matrix
and inclusion phase, respectively. Furthermore, �1 and
�2 represent the domain inside of inclusion 1 and 2,
respectively. The vector r denotes the relative position
between the two centers.

When applying the Eshelby’s equivalence principle
to the inclusion problem without considering the effects
of inter-inclusion interaction, the equation for deter-
mining the non-interacting solution for the eigenstrain
in an inclusion, denoted by ε∗0, which had been proved
to be constant throughout the entire spherical region,
can be written as

−A : ε∗0 = ε0 + S : ε∗0 (17)

where

A = (C1 − C0)−1 · C0 (18)

in which C0 and C1 are the stiffness tensor for the matrix
and inclusion phase, respectively.

In Equation 17, S is the Eshelby’s tensor for a spher-
ical inclusion and is defined as

S =
∫

�

G(x − x′) dx′, x ∈ � (19)

where the tensor G(x − x′) is the Green’s function for
elasticity and is defined by the following equation

ε(x) =
∫

�

G(x − x′) : ε∗(x′) dx′ (20)

in which ε(x) denotes the strain tensor at the location
x, ε∗(x) is the tensor of eigenstrain.

The explicit form for the tensor components of S
can be found in [11] for the spherical inclusion consid-
ered in the present study. The Eshelby’s tensor for other
shapes of inclusion can be found in [11].

By taking into account the effects of inter-inclusion
interaction within the present two-sphere context, the
integral equation governing the distributed eigenstrain
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can be expressed as

−A : ε∗(x) = ε0 +
∫

�i

G(x − x′) : ε∗(x′) dx′

+
∫

� j

G(x − x′) : ε∗(x′) dx′ (21)

where the last term in the right-hand side of Equation 21
represents the interaction effect due to the other sphere.

By subtracting the non-interacting solution (17) from
(21), the effect of inter-inclusion interaction can be
found by solving the following integral equation

−A : d∗(x) =
∫

� j

G(x − x′) dx′ : ε∗0

+
∫

�i

G(x − x′) : d∗(x′) dx′

+
∫

� j

G(x − x′) : d∗(x′) dx′ (22)

where

d∗(x) = ε∗(x) − ε∗0 (23)

Following the procedure detailed in [12], the following
equation can be obtained after dropping the higher order
terms for the parameter ρ = a

r and r is the spacing
between the centers of two spheres:

−A : d∗ = G2(x1 − x2) : ε∗0 + S : d∗ + G1(x1 − x2) : d∗

(24)

The tensors in Equation 24 are defined as

d∗ = 1

�

∫
�

d∗(x) dx (25)

G1(x1 − x2) =
∫

�1

G(x − x2) dx =
∫

�2

G(x1 − x) dx

(26)

G2(x1 − x2) = 1

�

∫
�1

∫
�2

G(x − x′) dx′dx (27)

2.3. Ensemble-volume averaged fields
Let us now consider the case that many equal-sized
spherical inclusions distributed randomly in an elas-
tic solid. Based on the solution of Equation 24, which
represents the effect of pair-wise interaction, and as-
suming that no inclusion overlaps with each other, the
ensemble-average solution of d∗ within the context of
approximate pairwise inter-inclusion interaction can be
obtained by integrating d∗ over all possible positions
(x2) of the second inclusion for a given location of the
first inclusion (x1). The ensemble-average process can
be expressed as

〈d∗〉(x1) =
∫

V −�1

d∗(x1 − x2)P(x2 | x1) dx2 (28)

where P(x2 | x1) is the conditional probability function
for finding the second inclusion centered at x2 given
the first inclusion centered at x1. In addition, angled
brackets denote the ensemble-average operator.

Finally, the approximate ensemble-volume averaged
eigenstrain accounting for pairwise interaction in an
inclusion, denoted as 〈ε̄∗〉, can be expressed as follows
[12]

〈ε̄∗〉 = Γ : ε∗0 (29)

where the components for the isotropic tensor Γ are
defined as


i jkl = γ1δi jδkl + γ2(δikδ jl + δilδ jk) (30)

in which δi j is the Kronecker delta,

γ1 = 5φ

4β2

{
−2(1 − ν0) − 5ν2

0

− 4α

3α + 2β
(1 + ν0)(1 − 2ν0)

}
(31)

and

γ2 = 1

2
+ 5φ

8β2

{
11(1 − ν0) + 5ν2

0

− 3α

3α + 2β
(1 + ν0)(1 − 2ν0)

}
(32)

where

α = 2(5ν0 − 1) + 10(1 − ν0)

(
κ0

κ1 − κ0
− µ0

µ1 − µ0

)
(33)

β = 2(4 − 5ν0) + 15(1 − ν0)
µ0

µ1 − µ0
(34)

In Equations 31 and 32, φ denotes the volume frac-
tion of the inclusions in the composite material under
consideration. In addition, ν, κ , and µ represent the
Poisson’s ratio, bulk modulus, and shear modulus, re-
spectively, for the corresponding material phase which
is denoted via the corresponding subscript. Subscript 0
is for the matrix phase and subscript 1 denotes the in-
clusion phase. For simplicity, both the matrix phase and
the inclusion phase are assumed to be isotropic and the
loading applied is within their elastic limits.

It is evident from Equation 29 that if the interaction
tensor Γ is set to be equal to the identity I, which means
that, in indicial notation,


i jkl = Ii jkl = 1

2
(δikδ jl + δilδ jk) (35)

then, the formulation recovers the case where the effects
of inter-inclusion interaction are neglected.

As illustrated in [12], the governing ensemble-
volume averaged field equation relating the average
strain ε̄, the uniform remote strain ε0, and the average
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eigenstrain ε̄∗ can be expressed as:

ε̄ = ε0 + φS : ε̄∗ (36)

With Equations 36, 29 and 17, we get

ε̄∗ = B : ε̄ (37)

where

B = Γ · [−A − S + φS · Γ]−1 (38)

By taking the ensemble-volume average of the fun-
damental equation for the Eshelby’s equivalence
principle:

C1 : ε(x) = C0 : �ε(x) − ε∗(x)� (39)

the relationship between the local strain average and
the eigenstrain average can be written as

C1 : ε̄1 = C0 : [ε̄1 − ε̄∗] (40)

Further utilizing Equation 18, we arrive at

ε̄1 = −A : ε̄∗ (41)

then, with Equation 37,

ε̄1 = −(A · B) : ε̄ (42)

Hence, upon comparing Equation 42 with Equation 8,
the strain concentration factor tensor considering the

κ∗
κ0

= (1 − 2ν0) {16(7 − 5ν0) − 2 [8(7 − 5ν0) + 5(1 + ν0)φ] φ}
16(1 − 2ν0)(7 − 5ν0) + (1 + ν0) [8(7 − 5ν0) + 5(1 + ν0)φ] φ

(52)

µ∗
µ0

= (7 − 5ν0)
{
8(7 − 5ν0)2 − φ

[
8(7 − 5ν0)2 + (

107 − 98ν0 + 65ν2
0

)
φ
]}

8(7 − 5ν0)3 + 2(4 − 5ν0)φ
[
8(7 − 5ν0)2 + (

107 − 98ν0 + 65ν2
0

)
φ
] (53)

effect of inter-inclusion interaction can be written as

A1 = −A · B (43)

The corresponding stress concentration factor tensor
can be derived by using Equations 13 and 14. The ex-
plicit expression for the stress concentration factor ten-
sor takes the following form

B1 = −C1 · A · B · [I − φB]−1 · C−1
0 (44)

Substituting Equation 43 into Equation 15 leads to the
effective elastic stiffness tensor incorporating the effect
of inter-inclusion interaction

C∗ = C0 · {I − φΓ · (−A − S + φS · Γ)−1} (45)

It is noted that Equation 45 recovers the results from the
Mori-Tanaka method if the effect of inter-inclusion in-
teraction is neglected, i.e., letting Γ→ I or equivalently
setting γ1 → 0 and γ2 → 1

2 .

2.4. Effective elastic moduli
of porous materials

Since the pores are assumed to be distributed randomly
among the matrix material, the porous material is statis-
tically isotropic. Therefore, the effective elastic prop-
erties represented by the effective bulk modulus κ∗
and the effective shear modulus µ∗ can be explicitly
written as

κ∗ = κ0

{
1 + 30(1 − ν0)φ(3γ1 + 2γ2)

3α + 2β − 10(1 + ν0)φ(3γ1 + 2γ2)

}

(46)

µ∗ = µ0

{
1 + 30(1 − ν0)φγ2

β − 4(4 − 5ν0)φγ2

}
(47)

In Equations 46 and 47, φ represents the porosity. For
a porous material, κ1 = µ1 = 0,

α = 2(5ν0 − 1) (48)

β = −7 + 5ν0 (49)

and

γ1 =
(−12 + 18ν0 − 15ν2

0

)
φ

4(−7 + 5ν0)2
(50)

γ2 = 1

2
+

(
107 − 98ν0 + 65ν2

0

)
φ

16(−7 + 5ν0)2
(51)

The scaled effective bulk modulus and effective shear
modulus of a porous material can be expressed as

The effective Young’s modulus E∗ and Poisson’s ratio
ν∗ of a porous material are obtained through the fol-
lowing relations

E∗ = 9κ∗µ∗
3κ∗ + µ∗

(54)

ν∗ = 3κ∗ − 2µ∗
2(3κ∗ + µ∗)

(55)

If inter-pore interaction is neglected, the scaled elastic
moduli can be easily obtained by setting γ1 → 0 and
γ2 → 1

2 ,

κ∗
κ0

= 2(1 − 2ν0)(1 − φ)

2(1 − 2ν0) + (1 + ν0)φ
(56)

µ∗
µ0

= (7 − 5ν0)(1 − φ)

7 − 5ν0 + 2(4 − 5ν0)φ
(57)

E∗
E0

= 2(7 − 5ν0)(1 − φ)

2(7 − 5ν0) + (1 + ν0)(13 − 15ν0)φ
(58)
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3. Results and discussion
3.1. Comparison with experimental results
There are a number of experimental results of the ef-
fective elastic properties for porous materials available
in the literature. Here, the experimental data on Al2O3
[13], porous glass [14], Gd2O3 [15], Sm2O3 [16], which
have representative matrix Poisson’s ratios equal to
0.19, 0.23, 0.277 and 0.3245, respectively, are chosen
to be compared with the predictions from the proposed
model.

The predicted results of the scaled Young’s modulus,
E∗/E0, and the scaled shear modulus, µ∗/µ0 for porous
alumina (Al2O3) are presented in Figs 2 and 3. The elas-
tic moduli of the matrix material: E0 = 386 GPa, µ0 =
163 GPa and ν0 = 0.19 are used as input. The compar-
ison with the experimental data of Coble and Kingery
[13] is also included in Figs 2 and 3. It is evident from
these figures that there is an excellent agreement be-
tween the predictions and the experimental values.

The experimental results for the effective bulk mod-
ulus of porous glass as a function of porosity were pre-
sented in [14]. Fig. 4 shows the comparison between
these experimental data and the predictions from the
proposed model. An excellent agreement between the
predictions and the measured data can be observed.

Figs 5 and 6 show the predicted scaled effective elas-
tic moduli of polycrystalline monoclinic Gd2O3 using
E0 = 150.26 GPa, µ0 = 58.85 GPa and ν0 = 0.277 as
input. The experimental data of Haglund and Hunter
[15] are also presented in Figs 5 and 6. It is noted that
the predictions agree very well with the experimental
data up to φ = 0.23.

Figure 2 Scaled effective Young’s modulus for porous Al2O3 (E0 =
386 GPa, µ0 = 163 GPa).

Figure 3 Scaled effective shear modulus for porous Al2O3 (E0 =
386 GPa, µ0 = 163 GPa).

Figure 4 Scaled effective bulk modulus for porous glass (κ0 = 46 GPa,
ν0 = 0.23).

Figure 5 Scaled effective Young’s modulus for Gd2O3 (E0 =
150.26 GPa, µ0 = 58.85 GPa).

Figure 6 Scaled effective shear modulus for Gd2O3 (E0 = 150.26 GPa,
µ0 = 58.85 GPa).

The comparisons of the scaled effective elastic prop-
erties as a function of porosity for polycrystalline mon-
oclinic Sm2O3 [16] are shown in Figs 7 and 8. A very
good agreement for small porosity (<0.1) is noted.
When φ ≥ 0.1, the predictions are slightly higher than
the measured values.

3.2. Comparison with other
theoretical models

Several different theoretical models have been de-
veloped to predict the effective elastic moduli for
porous materials. Ramakrishnan and Arunachalam [17]
presented a detailed summary of these models. Here,
the predictions from the proposed model are com-
pared with the results calculated from the following
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Figure 7 Scaled effective Young’s modulus for porous Sm2O3 (E0 =
145 GPa, µ0 = 54.75 GPa).

Figure 8 Scaled effective shear modulus for porous Sm2O3 (E0 =
145 GPa, µ0 = 54.75 GPa).

well-known theoretical models: the composite sphere
model (CSM), the self-consistent method (SCM), the
differential method (DM), the generalized method of
cells (GMC), and the unit cell finite element method
(UCFEM).

In the composite sphere model [18, 19], the two-
phase porous material is approximated as an assem-
blage of different-sized composite sphere that consists
of a sphere of matrix material and a second concen-
trically inside spherical phase. When this model is ex-
tended to a porous material, the effective bulk modulus
is expressed as

κ∗
κ0

= 2(1 − 2ν0)(1 − φ)

2(1 − 2ν0) + (1 + ν0)φ
(59)

The bounds on Young’s modulus and shear modulus
are written as

0 ≤ E∗
E0

≤ 2(7 − 5ν0)(1 − φ)

2(7 − 5ν0) + (1 + ν0)(13 − 15ν0)φ
(60)

0 ≤ µ∗
µ0

≤ (7 − 5ν0)(1 − φ)

7 − 5ν0 + 2(4 − 5ν0)φ
(61)

It is shown that the upper bounds of Hashin’s equations
are identical to those presented equations for the non-
interacting case. This is because these presented equa-
tions recover the results from the Mori-Tanaka method
[6], which coincides with the Hashin’s upper bounds as
pointed out by Ramakrishnan and Arunachalam [17].

Ramakrishnan and Arunachalam [17] presented a
modified composite sphere model, and their equations

Figure 9 Scaled Young’s modulus predicted from proposed model and
composite sphere models.

Figure 10 Scaled shear modulus predicted from proposed model and
composite sphere models.

for the effective elastic moduli are given by

E∗
E0

= (1 − φ)2

1 + (2 − 3ν0)φ
(62)

µ∗
µ0

= 4(1 + ν0)(1 − φ)2

4(1 + ν0) + (11 − 19ν0)φ
(63)

Figs 9 and 10 show the comparison for the scaled
Young’s modulus and the shear modulus predicted by
the proposed model, the composite sphere model [18]
and the modified composite sphere model [17]. The
elastic properties: E0 = 150.26 GPa, µ0 = 58.85 GPa
and ν0 = 0.277 [15], are used. From Figs 9 and 10,
the predictions from the proposed model show similar
trends as compared to the other models and lie between
the curves for the upper bound of the Hashin model and
the Ramakrishnan-Arunchalam model. The proposed
model correlates very well with the experimental re-
sults (Figs 5 and 6), suggesting that the Ramakrishnan-
Arunachalam model considerably underestimates the
effective elastic moduli of Gd2O3.

In the self-consistent method [3, 4], the effects of
inclusion interaction are approximated by embedding
a spherical inclusion in a matrix of unknown effec-
tive moduli. For porous materials, the Hill-Budiansky’s
equation for the shear modulus could be expressed as

(
µ∗
µ0

)2

+
{

(1 + ν0)(3 − φ)

4(1 − 2ν0)
+ (5φ − 2)

2

} (
µ∗
µ0

)

+ 3(1 + ν0)(2φ − 1)

4(1 − 2ν0)
= 0 (64)
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The bulk modulus is given as

κ∗
κ0

= 2(1 − 2ν0)(1 − φ)

2(1 − 2ν0) + (1 + ν0)φ
(

µ∗
µ0

) (65)

Zimmerman [5] used the differential method and estab-
lished the following equations for the elastic moduli of
porous material [17]

µ∗
µ0

= (1 − φ)2

3(1 − ν0)

[
2(1 + ν0) + (1 − 5ν0)

(
µ∗
µ0

)3/5
]1/3

(66)

κ∗
κ0

=
2(1 − 2ν0)

(
µ∗
µ0

)
(1 + ν0) + (1 − 5ν0)

(
µ∗
µ0

)3/5 (67)

Comparisons of the predictions for the scaled Young’s
modulus and the shear modulus from the proposed
model, the self-consistent method [3, 4] and the dif-
ferential method [5] are presented in Figs 11 and 12.
The elastic properties of Gd2O3: E0 = 150.26 GPa,
µ0 = 58.85 GPa and ν0 = 0.277 [15], are used as in-
put. It is observed from these figures that the proposed
model agrees with the Zimmerman model.

Herakovich and Baxter [8] used the generalized
method of cells to determine the effective elastic
properties of porous materials for four distinct pore
shapes: cylinder, cube, sphere and cross. In Roberts and
Garboczi [1], the finite element method was employed

Figure 11 Comparison of Young’s modulus with self-consistent method
and differential method.

Figure 12 Comparison of shear modulus with self-consistent method
and differential method.

Figure 13 Comparison of Young’s modulus with GMC sphere model
and R&G sphere model.

Figure 14 Comparison of shear modulus with GMC sphere model.

to derive formulas that relate the elastic properties of ce-
ramics to porosity and microstructure for three different
models: spherical pores, solid spheres, and ellipsoidal
pores. Figs 13 and 14 present the comparisons for the
scaled Young’s modulus and shear modulus predicted
by the proposed model, the GMC sphere model [8]
and the Roberts-Garboczi model [1]. The elastic mod-
uli of Al2O3: E0 = 386 GPa, µ0 = 163 GPa and ν0 =
0.19 [13], are used. It is shown from these figures that
the proposed model, the GMC sphere model and the
Roberts-Garboczi model are in good agreement. For
low porosity of φ ≤ 0.2, the proposed model corre-
lates better with the Roberts-Garboczi model, and for
φ > 0.2, the proposed model agrees more closely with
the GMC sphere model.

3.3. Poisson ratio
The effective Poisson’s ratios as a function of porosity
and ν0 are presented in Fig. 15 for low to intermedi-
ate porosity. Both interaction and non-interaction cases
are included. If the inter-pore interaction is considered,
increase in porosity leads to a decrease in the effec-
tive Poisson’s ratio for ν0 above 0.25, and causes the
effective Poisson’s ratio to increase for ν0 below 0.25.
If the inter-pore interaction is neglected, the effective
Poisson’s ratio will decrease with increasing poros-
ity for ν0 higher than 0.2, and increases as porosity
increases for ν0 less than 0.2. For low porosity, the
difference in Poisson’s ratio for the interaction and non-
interaction is negligible, but this difference increases
with increasing porosity.
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Figure 15 Effective Poisson’s ratio as a function of porosity and ν0.
Solid lines consider inter-pore interaction and dashed lines neglect inter-
pore interaction.

4. Conclusions
A statistical micromechanical approach is presented
in this paper to predict the effective elastic proper-
ties of porous materials based on the theory of average
fields, the proposed approximate pairwise interaction
solutions and the ensemble-volume averaging process.
Closed-form and analytical explicit expressions for the
effective elastic moduli have been derived in terms of
the mechanical properties of the matrix material and
porosity. The present formulation differs from most
of existing theoretical methods in that the interaction
effects among the pores are directly accounted for
through taking the statistical average on the solution
of the pairwise inter-inclusion interaction problem.

It is shown in Section 3 that the predicted effec-
tive elastic moduli are in good agreement with sev-
eral sets of previously published experimental data
reported by Coble and Kingery [13], Walsh et al. [14],
Haglund and Hunter [15], Hunter et al. [16]. Com-
parisons with several other existing theoretical models
have shown that the present model, the Zimmermon’s
differential method, the GMC sphere model and the
Roberts-Garboczi’s model are in good agreement. In
Sections 2 and 3, it is explicitly demonstrated that the
presented formulation recovers the classical Hashin

bounds and the Mori-Tanaka estimates if the effects
of the inter-pore interaction are neglected. The depen-
dence of the effective Poisson’s ratio on the porosity is
also investigated.

The presented method can be readily modified to ac-
commodate pores of different sizes. The proposed mi-
cromechanical framework provides a new approach for
analytical estimation of effective properties of linear
porous materials. No parameter estimation or data fit-
ting is required in the proposed framework.
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